In today’s climate emergency, access to clean and cheap energy is more important than ever. Several ways have been envisaged for several years now, but a number of technological issues still need to be overcome before they can be put into practice, as they represent breakthroughts. Whether for energy storage than for fourth generation nuclear reactors, molten salt environment used as coolant and/or as fuel is highly corrosive requiring a complexe choice of structural materials.
The aim of this subject proposed in the Corrosion and Materials Behavior Section is to study in depth the chemical properties of different chloride molten salts : the basic ternary salt (NaCl-MgCl2-CeCl3) but also the corrosion/fission/activation products that can be produced (MxCly with M=Cr, Fe, Te, Nd, Ni, Mo,…). The activity coefficients and solubility limits of these metallic elements will be determined using various techniques such as electrochemistry and Knudsen cell mass spectrometry. If required, this study can be completed by the phase transition temperature and heat capacity measurements using differential scanning calorimetry.