Join CEA LETI for an exciting technological journey! Immerse yourself in the world of III V
based transistors integrated on compatible CMOS circuits for 6 G future communications
This thesis offers the chance to work on a ambitious project, with potential to continue into
a thesis If you're curious, innovative, and eager for a challenge, this opportunity is perfect
for you!
As the consumption of digital content continues to grow, we can foresee that 6 G
communication systems will have to find more capacity to support the increase in traffic
New Sub THz frequencies based systems are a huge opportunity to increase data rate but
are very challenging to build and maturate the power amplifier required to transmit a
signal will have to offer sufficient power and energy efficiency which is not obtained with
actual silicon technology InP based HBTs (Heterojunction Bipolar Transistors) developed
on large Silicon substrates have the potential to meet the requirements and be integrated
as close as possible to the CMOS circuits to enable minimal system/interconnect losses
Sb based semiconductors for GaAsSb HBT are emerging as highly promising materials,
especially for its electrical properties to integrate the Base layer of the Transistor It is
therefore necessary to produce high performance electrical contacts on this type of
semiconductor while remaining compatible with the manufacturing processes of the Si Fab
technology platforms
Throughout
this thesis, you will gain a broad spectrum of knowledge, beneficiate from the
rich technical environment of the 300 200 mm clean room and the nano characterization
platform You will collaborate with multidisciplinary teams to develop a deep understanding
of the ohmic contacts and analyse existing measurements Several apsects of the metal
(Ni or Ti p GaAs 1 x Sb x contact will be investigated
•Identify wet and plasma solutions allowing the GaAsSb native oxide removing without
damaging the surface with XPS and AFM
•Characterize GaAs 1 x Sb x epitaxy doping level (Hall effect, SIMS, TEM)
•Understand the phase sequence during annealing between the semiconductor and the
metal with XRD and Tof SIMS Manage this intermetallic alloys formation to not
deteriorate the contact interface (TEM image associated)
•Evaluate electrical contact properties using TLM structures Measurement of the
specific contact resistivity, sheet resistance of the semiconductor ant transfer length
associated The student will be a motive force to perform electrical tests on an automatic prober