About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   New experimental constraints on the weak interaction coupling constants by coincidence measurements of complex decay schemes

New experimental constraints on the weak interaction coupling constants by coincidence measurements of complex decay schemes

Corpuscular physics and outer space Instrumentation nucléaire et métrologie des rayonnements ionisants Nuclear physics Technological challenges

Abstract

Accurate experimental knowledge of forbidden non-unique beta transitions, which constitute about one third of all known beta transitions, is an important and very difficult subject. Only a few reliable studies exist in the literature. Indeed, the continuous energy spectrum of these transitions is difficult to measure precisely for various reasons that cumulate: high diffusivity of electrons in matter and non-linearity of the detection system, unavailability of some radionuclides and presence of impurities, long half-lives and complex decay schemes, etc. Accurate theoretical predictions are equally difficult because of the necessity of coupling different models for the atomic, the nuclear and the weak interaction parts in the same, full-relativistic formalism. However, improving our knowledge of forbidden non-unique beta transitions is essential in radioactivity metrology to define the becquerel SI unit in the case of pure beta emitters. This can have a strong impact in nuclear medicine, for the nuclear industry, and for some studies in fundamental physics such as dark matter detection and neutrino physics.
Our recent study, both theoretical and experimental, of the second forbidden non-unique transition in 99Tc decay has highlighted that forbidden non-unique transitions can be particularly sensitive to the effective values of the weak interaction coupling constants. The latter act as multiplicative factors of the nuclear matrix elements. The use of effective values compensates for the approximations used in the nuclear structure models, such as simplified correlations between the nucleons in the valence space, or the absence of core excitation. However, they can only be adjusted by comparing with a high-precision experimental spectrum. The predictability of the theoretical calculations, even the most precise currently available, is thus strongly questioned. While it has already been demonstrated that universal values cannot be fixed, effective values for each type of transition, or for a specific nuclear model, are possible. The aim of this thesis is therefore to establish new experimental constraints on the weak interaction coupling constants by precisely measuring the energy spectra of beta transitions. Ultimately, establishing robust average effective values of these coupling constants will be possible, and a real predictive power for theoretical calculations of beta decay will be obtained.
Most of the transitions of interest for constraining the coupling constants have energies greater than 1 MeV, occur in complex decay schemes and are associated to the emission of multiple gamma photons. In this situation, the best strategy consists in beta-gamma detection in coincidence. The usual detection techniques in nuclear physics are appropriate but they must be extremely well implemented and controlled. The doctoral student will rely on the results obtained in two previous theses. To minimize self-absorption of the electrons in the source, they will have to adapt a preparation technique of ultra-thin radioactive sources developed at LNHB to the important activities that will be required. He will have to implement a new apparatus, in a dedicated vacuum chamber, including a coincidence detection of two silicon detectors and two gamma detectors. Several studies will be necessary, mechanical and by Monte Carlo simulation, to optimize the geometric configuration with regard to the different constraints. The optimization of the electronics, acquisition, signal processing, data analysis, spectral deconvolution and the development of a complete and robust uncertainty budget will all be topics covered. These instrumental developments will make possible the measurement with great precision of the spectra from 36Cl, 59Fe, 87Rb, 141Ce, or 170Tm decays. This very comprehensive subject will allow the doctoral student to acquire instrumental and analytical skills that will open up many career opportunities. The candidate should have good knowledge of nuclear instrumentation, programming and Monte Carlo simulations, as well as a reasonable knowledge of nuclear disintegrations.

Laboratory

Département d’Instrumentation Numérique
Service Instrumentation et Métrologie des Rayonnements Ionisants
Laboratoire National Henri Becquerel pour la Métrologie de l'Activité
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down