About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   The MINI-BINGO demonstrator: advancing the quest to unveil the neutrino nature

The MINI-BINGO demonstrator: advancing the quest to unveil the neutrino nature

Corpuscular physics and outer space Particle physics

Abstract

BINGO is an innovative neutrino physics project designed to lay the groundwork for a large-scale bolometric experiment dedicated to the search for neutrinoless double beta decay. The goal is to achieve an extremely low background index—on the order of 10^-5 counts/(keV·kg·yr)—while delivering excellent energy resolution in the region of interest. These performance levels will enable the exploration of lepton number violation with unprecedented sensitivity.

The project relies on scintillating bolometers, which are particularly effective at rejecting the dominant background caused by surface alpha particles. It focuses on two highly promising isotopes, 100Mo and 130Te, whose complementary properties make them both strong candidates for future large-scale investigations.

BINGO introduces three major innovations to the well-established heat-light hybrid bolometer technology. First, the sensitivity of the light detectors will be enhanced by an order of magnitude through the use of Neganov-Luke amplification. Second, a novel detector assembly design will reduce surface radioactivity contributions by at least an order of magnitude. Third, and for the first time in a macrobolometer array, an internal active shield made of ultrapure BGO scintillators with bolometric light readout will be implemented to suppress external gamma background.

As part of this thesis work, the student will take part in the assembly and installation of the MINI-BINGO demonstrator within the cryostat recently installed at the Modane Underground Laboratory. He/she will be involved in data acquisition and analysis, and will contribute to evaluating the final background rejection enabled by the performance of the detector's final configuration.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique des Particules
Groupe Sources et Réacteurs (GNSR)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down