About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Testing the Standard Model in the Higgs-top sector in a new inclusive way with multiple leptons using the ATLAS detector at the LHC

Testing the Standard Model in the Higgs-top sector in a new inclusive way with multiple leptons using the ATLAS detector at the LHC

Corpuscular physics and outer space Particle physics

Abstract

The LHC collides protons at 13.6 TeV, producing a massive dataset to study rare processes and search for new physics. The production of a Higgs boson in association with a single top quark (tH) in the multi-lepton final state (2 same-sign leptons or 3 charged leptons) is particularly promising, but challenging to analyze due to undetected neutrinos and fake leptons. The tH process is especially interesting because its small Standard Model cross section originates from a subtle destructive interference between diagrams including the Higgs coupling to the W boson and the Higgs coupling to the top quark. This makes tH uniquely sensitive: even small deviations from the Standard Model can strongly enhance its production rate. The measurement of the tH cross section is delicate because the ttH and ttW processes have similar topologies and much larger cross sections, requiring a simultaneous extraction to obtain a reliable result and properly account for correlations between signals. ATLAS observed a moderate excess of tH using the Run 2 dataset (2.8 s), making the analysis of Run 3 data including these correlations crucial. The thesis will first exploit AI algorithms based on Transformer architectures to reconstruct event kinematics and extract observables sensitive to the CP nature of the Higgs-top coupling. In a second phase, a global approach will be adopted to analyze simultaneously the ttW, ttZ, ttH, tH, and 4-top processes, searching for anomalous couplings, including those violating CP symmetry, within the framework of the Standard Model Effective Field Theory (SMEFT). This study will provide the first complete measurement of tH in the multi-lepton channel with Run 3 data and will pave the way for a global analysis of rare processes and anomalous couplings at the LHC in this channel.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique des Particules
Groupe Atlas (ATLAS)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down