



One of JWST’s major goals is to characterize, for the first time, the atmospheres of rocky, temperate exoplanets, a key milestone in the search for potentially habitable worlds. The temperate rocky exoplanets accessible to JWST are primarily those orbiting M-type stars. However, a major question remains regarding the ability of planets orbiting M-dwarfs to retain their atmospheres.
In 2024, an exceptional 500-hour Director’s Discretionary Time (DDT) program, entitled Rocky Worlds, was dedicated to this topic, underlining its strategic importance at the highest level (NASA, STScI).
The main objective of this PhD project is to: 1) Analyze all available JWST/MIRI eclipse data for rocky exoplanets from Rocky Worlds and other public programs using a consistent and homogeneous framework; 2)Search for population-level trends in the observations and interpret them using 3D atmospheric simulations.
Through this work, we aim to identify the physical processes that control the presence and composition of atmospheres on temperate rocky exoplanets.

