



Diabetic foot ulcer (DFU), a severe complication of diabetes affecting approximately 18.6 million people worldwide each year, is associated with high rates of amputation and mortality. Like other chronic wounds, DFUs exhibit impaired healing due to a dysregulated cascade of cellular signalling and behavioural events that normally ensure rapid closure of the skin barrier. Among the key cellular players, fibroblasts and endothelial cells are central to the proliferative and remodelling phases of wound repair – processes that are notably dysfunctional in chronic wounds. Although endothelial-fibroblast crosstalk is recognized as an essential driver of normal skin healing, the specific mechanisms governing their interaction in DFU is poorly understood.
The main objective of this PhD project is to decipher the intercellular communication between endothelial cells and fibroblasts that underlies the chronicity of DFU. Particular attention will be devoted to extracellular vesicle-associated microRNAs (miRNAs), which are pivotal regulators of intercellular communication through modulation of gene expression in recipient cells. By characterizing the repertoire of pro- and anti-healing miRNAs exchanged between endothelial cells and fibroblasts, this project seeks to uncover novel molecular targets and therapeutic strategies to promote wound repair in diabetic foot ulcers.

