



The microstructure-properties relationship is a core concept of metallurgy, and of materials engineering in general. For instance, the hardness of quenched steels emerges from their martensitic microstructure, induced by a phase change in iron. Here we are concerned about metallurgy under extreme conditions in which metallic samples undergo pressurizations in the 100 GPa (=1 million atmospheres) range, making it possible to synthesise new crystalline phases with potentially interesting properties (hardness, magnetism, etc.).
Studied systems will include tin, then indium and cobalt. The three of them exhibit a rich polymorphism under high pressure and temperature. We will seek to elucidate the role of defects such as twinning and plasticity on the mechanism and kinetics of these transitions. This will be done by comparing experimental observations with microstructure predictions obtained through mesoscopic simulation. High pressure/ high temperature will be mainly generated by laser-heated diamond anvil cells, and characterisation tools will include in situ X-ray imaging by diffraction and tomography, as well as electron microscopy. The X-ray sources used will be synchrotron sources and the European free-electron X-ray laser.

