About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Towards automated and reconfigurable microfluidic platforms for the study and development of nuclear fuel recycling processes

Towards automated and reconfigurable microfluidic platforms for the study and development of nuclear fuel recycling processes

Engineering sciences Mechanics, energetics, process engineering

Abstract

The main objective of this PhD project is the design and development of the first automatic and reconfigurable microfluidic platform dedicated to research and development on the nuclear fuel cycle. In a context where mastering nuclear processes remains a key challenge, both for energy production and for the sustainable management of nuclear materials, microfluidic devices represent a particularly promising approach. These autonomous laboratories on a chip have already demonstrated their potential in various fields, such as chemistry, materials science, and biology. Their application to nuclear processes would help reduce radiation exposure risks, minimize waste generation, and optimize resources by enabling a larger number of experiments to be performed safely, quickly, and reproducibly. For about a decade, the DMRC has been conducting phenomenological studies on the main stages of the nuclear process (dissolution, solvent extraction, precipitation, etc.) using microfluidic devices. In parallel, it has developed PhLoCs (Photonic-Lab-on-Chips), which allow the miniaturization of several analytical techniques (UV-Vis spectroscopy, LES, holography, etc.) and their integration for online monitoring of the investigated phenomena. Nevertheless, no truly autonomous and fully automated platform currently exists that combines process execution with integrated analytical monitoring.
The aim of this PhD work is therefore to make a decisive step by designing a modular device where several functional chips can be assembled, some dedicated to process operations (e.g., uranium/plutonium separation) and others to online measurements, within a flexible configuration adapted to nuclear environments. In addition, the research will focus on integrating new instrumental techniques directly on chips, such as FTIR and UV-Vis-NIR spectroscopies, which are crucial for studying critical process steps, including solvent degradation. This project thus aims to establish the foundations of next-generation microfluidic platforms that combine safety, modularity, and performance to advance nuclear fuel cycle research. At the end of the PhD, the candidate will have developed unique expertise in microfluidics applied to nuclear processes, combining optical instrumentation and automation. These skills will offer strong career opportunities in research and advanced process engineering.

Laboratory

Département de recherche sur les procédés pour la mine et le recyclage du combustible
Service des Technologies Durables pour le Cycle des matières
Laboratoire de développement de procédés pour le Recyclage et la Valorisation
Montpellier
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down