About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Instrumented PCB for predictive maintenance

Instrumented PCB for predictive maintenance

Cyber physical systems - sensors and actuators Electronics and microelectronics - Optoelectronics Engineering sciences Technological challenges

Abstract

The manufacturing of electronic equipment, and more specifically Printed Circuit Boards (PCBs), represents a significant share of the environmental impact of digital technologies, which must be minimized. Within a circular economy approach, the development of monitoring and diagnostic tools for assessing the health status of these boards could feed into the product’s digital passport and facilitate their reuse in a second life. In a preventive and prescriptive maintenance perspective, such tools could extend their lifespan by avoiding unnecessary periodic replacement in applications where reliability is a priority, as well as adapting their usage to prevent premature deterioration.
This PhD proposes to explore innovative instrumentation of PCBs using ‘virtual’ sensors, advanced estimators powered by measurement modalities (such as piezoelectric, ultrasonic, etc.) that could be integrated directly within the PCBs. The objective is to develop methods for monitoring the health status of the boards, both mechanically (fatigue, stresses, deformations) and electronically.
A first step will consist of conducting a state-of-the-art review and simulations to select the relevant sensors, define the quantities to be measured, and optimize their placement. Multi-physics modeling and model reduction will then make it possible to link the data to PCB integrity indicators characterizing its health status. The approach will combine numerical modeling, experimental validations, and multiparametric optimization methods.

Laboratory

Département Systèmes (LETI)
Service Systèmes de Capteurs, électroniques pour l’Energie
Laboratoire Autonomie et Intégration des Capteurs
Université Catholique de Louvain (UCLouvain)
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down