



Thanks to strong collaborations between teams from several research institutes and the cleanroom facilities at CEA-LETI, Grenoble has been a pioneer in the development of spin qubit devices as a platform for quantum computing. The lifetime of these spin qubits is highly sensitive to fluctuations in the qubit's electrical environment, known as charge noise. Charge noise in spin qubit devices potentially originates from trapping/detrapping events within the amorphous and defective materials (e.g., SiO2, Si3N4). This PhD project aims to better understand the origin of this noise through numerical simulations, and guide the development of quantum devices towards lower noise levels and higher quality qubits.
The goal of this PhD position is to improve the understanding of noise in spin qubit devices through multi-scale simulations going from the atomistic to the device level. The PhD candidate will use codes developed at CEA for the numerical modeling of spin qubits and will leverage supercomputing facilities to perform the simulations. Depending on the candidate’s profile and interests, code development may be considered. The work will also involve collaborations with experimentalists to validate simulation methods and to aid in the interpretation of experimental results.

