



This project aims at developing a miniaturized multiplex device dedicated to the screening of the chelating ability of potential molecules for the decorporation of certain radionuclides (RN) from the nuclear power industry, for which current treatments are not satisfactory. The objective is to accelerate the identification of the most promising chelating molecules, while benefiting from the advantages of miniaturisation, such as the consumption of very small quantities of molecules and RN. In a previous project, a phosphated monolith of various lengths has been grafted in situ and characterised in capillaries of 100 µm internal diameter. The quantities of UO22+, Zr4+, Sr2+, Co2+, Cs+ and Ag+ immobilised on these monolithic phases have been measured online by coupling to an ICP-MS.Based on this work, the candidate will be responsible for developing and validating the miniaturised screening method with UO22+, for which data and chelating molecules are available, extending the approach primarily to Zr4+, Sr2+, Co2+, and to fabricate the microfluidic device incorporating parallel microchannels, in order to ultimately screen candidate molecules for distinct RNs in a single fluidic microsystem.

