About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Electromagnetic Signature Modeling and AI for Radar Object Recognition

Electromagnetic Signature Modeling and AI for Radar Object Recognition

Communication networks, IOT, radiofrequencies and antennas Engineering sciences Mathematics - Numerical analysis - Simulation Technological challenges

Abstract

This PhD thesis offers a unique opportunity to work at the crossroads of electromagnetics, numerical simulations, and artificial intelligence, contributing to the development of next-generation intelligent sensing and recognition systems. The intern will join the Antenna & Propagation Laboratory at CEA-LETI, Grenoble (France), a world-class research environment equipped with state-of-the-art tools for propagation channel characterization and modelling. A collaboration with the University of Bologna (Italy) is planned during the PhD.

This PhD thesis aims to develop advanced electromagnetic models of near-field radar backscattering, tailored to radar and Joint Communication and Sensing (JCAS) systems operating at mmWave and THz frequencies. The research will focus on the physics-based modeling of the radar signatures of extended objects, accounting for near-field effects, multistatic and multi-antenna configurations, as well as the influence of target materials and orientations. These models will be validated through electromagnetic simulations and dedicated measurement campaigns, and subsequently integrated into scene-level and multipath propagation simulation tools based on ray tracing. The resulting radar signatures will be exploited to train artificial intelligence algorithms for object recognition, material property inference, and radar imaging. In parallel, physics-assisted AI approaches will be investigated to accelerate electromagnetic simulations and reduce their computational complexity. The final objective of the thesis is to integrate radar backscattering-based information into a 3D Semantic Radio SLAM framework, in order to improve localization, mapping, and environmental understanding in complex or partially obstructed scenarios.

We are seeking a student at engineering school or Master’s level (MSc/M2), with a strong background in signal processing, electromagnetics, radar, or telecommunications. An interest in artificial intelligence, physics-based modeling, and numerical simulation is expected. Programming skills in Matlab and/or Python are appreciated, as well as the ability to work at the interface between theoretical models, simulations, and experimental validation. Scientific curiosity, autonomy, and strong motivation for research are essential.The application must include a CV, academic transcripts, and a motivation letter.

Laboratory

Département Systèmes (LETI)
Service Technologies Sans Fils
Laboratoire Antennes, Propagation, Couplage Inductif
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down