



The integration of renewable energy sources (RES) has become an important issue for power converters. The increasing number of these converters and their average utilization rate allows for a rethink of energy exchange management at the system level. This leads us to the concept of an energy hub, which can interface, for example, a photovoltaic (PV) system, an electric vehicle, a grid, and stationary storage with loads.
The main objective of this thesis is to improve the efficiency, compactness, and modularity of the energy hub through control. Several ideas emerge to achieve this, such as advanced control to minimize losses, the use of AC input opposition to reduce electromagnetic compatibility (EMC) filtering, series/parallel DC output configurations to address 400Vdc/800Vdc batteries, and increasing the switching frequency to reduce volume, etc.
Thus, this thesis will, in the medium term, lead to the development of an optimal converter in terms of both energy efficiency and environmental impact.

