About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Disruptive RF substrates based on polycrystalline materials

Disruptive RF substrates based on polycrystalline materials

Condensed matter physics, chemistry & nanosciences Emerging materials and processes for nanotechnologies and microelectronics Solid state physics, surfaces and interfaces Technological challenges

Abstract

A high resistivity substrate is essential for the design of state-of-the-art high-frequency circuits. The high-resistivity (HR) SOI substrate with a trap-rich layer below the buried oxide (BOX) is the option with the highest performance at present for CMOS technologies. However, these substrates have two major limitations: (1) their relatively high price and (2) the degradation of their RF performance at operating temperatures above 100 °C.
As part of this postdoctoral study, we propose to study, in collaboration with the Catholic University of Louvain (UCL), the RF performance over a wide temperature range of a polycrystalline substrate over its entire thickness (several hundred µm). These polycrystalline substrates indeed have a high density of electronic traps distributed throughout the entire volume, which in principle allows for stable RF performance even at high operating temperatures.
The person hired will participate in the following research: (1) screening of promising substrates from TCAD simulations (e.g. poly-Si, poly-SiC, …), (2) integration of polycrystalline substrates in an SOI process flow at Leti, (3) measurement of RF performances in frequency and temperature at UCL. A particular attention will be placed on understanding the physical phenomena involved through the comparison of experimental and simulation data.

Laboratory

Département Composants Silicium (LETI)
Service Intégrations et Technologies pour les conversions d'énergies
Laboratoire Intégration et Transfert de Film
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down