About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   2D materials electrical characterization for microelectronics

2D materials electrical characterization for microelectronics

Condensed matter physics, chemistry & nanosciences Emerging materials and processes for nanotechnologies and microelectronics Solid state physics, surfaces and interfaces Technological challenges

Abstract

Future microelectronic components will be ever smaller and ever more energy-efficient. To meet this challenge, 2D materials are excellent candidates, thanks to their remarkable dimensions and electronic properties (high mobility of charge carriers, high light emission/absorption). What's more, they feature van der Waals (vdW) surfaces, i.e. no dangling bonds, enabling them to retain their properties even at very small dimensions (down to the monolayer). New 2D materials and vdW stacks with novel physical properties are being discovered every day. However, integrating them and measuring their performance in circuits remains an ongoing challenge, as their properties must be preserved during integration.
The aim of this post-doc is to develop components for qualifying 2D materials for microelectronic (RF transistor) and spintronic (magnetic memory) applications in horizontal configuration on silicon. A vertical measurement method has already been developed by CEA LETI. Building on these developments, the candidate will develop this measurement system and characterize various materials produced in MBE by CEA-IRIG. The work will involve transferring these layers onto chips, optimizing the electrical contacts and developing the in-plane electrical measurement chain.

Laboratory

Département Composants Silicium (LETI)
Service Intégrations et Technologies pour les conversions d'énergies
Laboratoire Intégration et Transfert de Film
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down