In recent years, there have been numerous technological advancements in silicon-based semiconductors. However, the limits in terms of frequency performance and power seem to have been reached, requiring the development of new type III-V devices (such as InP and GaN) that are faster, more powerful and well adapted for new RF mmW applications. For reasons of flexibility, performance, and cost, it is crucial to co-integrate these new high-performance III-V components with the more traditional silicon technologies. This is one of the major objectives of the proposed topic.
The focus will be on the design and optimisation of millimetre-wave RF circuits using 3D heterogeneous hybrid bonding assembly technology. In recent years, numerous test vehicles have been fabricated and characterised to demonstrate the advantages and disadvantages of the hybrid bonding assembly process for millimetre wave RF applications. The aim is to extend this work and focus the studies and research on real RF systems, such as millimetre-wave power amplifiers. The DTCO (Design and Technology Co-Optimisations) approach will not only enable the design of efficient 3D RF circuits, but will also allow the adaptation of different 3D design rules to make 3D hybrid bonding technology relevant for the production of millimetre-scale 3D integrated systems.