About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   3D occupancy grid analysis with a deep learning approach

3D occupancy grid analysis with a deep learning approach

Computer science and software Engineering sciences

Abstract

The context of this subject is the development of autonomous vehicles / drones / robots.
The vehicle environment is represented by a 3D occupancy grid, in which each cell contains the probability of presence of an object. This grid is refreshed over time, thanks to sensor data (Lidar, Radar, Camera).
Higher-level algorithms, like path planning or collision avoidance, think in terms of objects described by their path, speed, and nature. It is thus mandatory to get these objects from individual grid cells, with clustering, classification, and tracking.
Many previous publications on this topic comes from the context of vision processing, many of them using deep learning. They show a big computational complexity, and do not benefit from occupancy grids specific characteristics (lack of textures, a priori knowledge of areas of interest…). We want to explore new techniques, tailored to occupation grids, and more compatible with embedded and low cost implementation.

The objective of the subject is to determine, from a series of 3D occupation grids, the number and the nature of the different objects, their position and velocity vector, exploiting the recent advances of deep learning on unstrucured 3D data.

Laboratory

Département Architectures Conception et Logiciels Embarqués (LIST-LETI)
Service Calcul et Systèmes Numériques
Laboratoire Infrastructure et Ateliers Logiciels pour Puces
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down