About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Aerosol generation and transformation mechanisms during the fuel debris cutting at Fukushima Daiichi future dismantling

Aerosol generation and transformation mechanisms during the fuel debris cutting at Fukushima Daiichi future dismantling

Engineering sciences Materials and applications Thermal energy, combustion, flows

Abstract

During Fukushima Daiichi nuclear reactor accident, several hundred tons of fuel debris (the mixture generated by the reactor core melting and its interaction with structural materials) have been formed. Japanese government plans to dismantle with 30 to 40 years Fukushima Daiichi nuclear power station, which implies recovering these fuel debris that are there. CEA is part to several projects aiming at mastering the risks due to aerosols generated during fuel debris cutting.
The post-doctoral work objective is to exploit the large experimental database created thanks to these projects in order to study the generation and transformation mechanisms of these cutting aerosols for both thermal and mechanical cutting. An important source of aerosol seems to be partial evaporation/condensation, close to fractional distillation. A thermodynamic modelling shall be proposed, coupled with some kinetic effects. For mechanical cutting, aerosol analyses shall be compared to fuel debris block microstructure to quantify a preferential release of some phases.
After a bibliographic study, a synthesis of the experimental results will be carried out and completed, where necessary, by chemical or crystallographic analyses. The aim will be to propose a modelling of these aerosol generation and transformation mechanisms.
The postdoctoral researcher will work within an experimental laboratory of about 20 staff within CEA IRESNE institute (Cadarache site, Southern France).

Laboratory

Département de Technologie Nucléaire
Service Mesures et modélisation des Transferts et des Accidents graves
Laboratoire d’études et d’expérimentation pour les accidents graves
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down