Context:
The reference ceramic fabrication process involves three main stages: grinding, pressing, and sintering. Pellet compaction during pressing relies on three main densification steps rearrangements by motion, compaction by strain, and agglomerate fractures by compression. This research project aims to explore the influence of the pressing step on the microstructure behavior during the sintering process. The study focuses on a powder composed of agglomerates with a microstructure based on a homogeneous mix of TiO2-Y2O3, TiO2 for surrogate UO2 and Y2O3 for surrogate PuO2. Each agglomerate consists of unbreakable elementary particles included in breakable aggregates, synthesized using the Cryogenic Granulation Synthesis Process (CGSP) [1].
Recent investigations at the Anatomix X-ray beam line in the synchrotron Soleil [2] have validated the results of tomographic micro-compressions, aligning with Kendall's theory, Fig 1. The experiments involved one-way cyclic micro-compression tests on agglomerates subjected to a simple load and unload cycle until breakage. Tomographic post-treatments provided insights into porosities, crack initiation, and propagation. Several DEM simulation studies have also been used to explore agglomerate behavior under dynamic or quasi-static loading with and without breakage, however without fully calibrating the breakage model [3], [4], [5].