About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Agglomerate breakage model and homogenisation by DEM simulations: Calibration with tomographic micro-compressions in X ray beam line Soleil

Agglomerate breakage model and homogenisation by DEM simulations: Calibration with tomographic micro-compressions in X ray beam line Soleil

Engineering sciences Materials and applications Mechanics, energetics, process engineering

Abstract

Context:
The reference ceramic fabrication process involves three main stages: grinding, pressing, and sintering. Pellet compaction during pressing relies on three main densification steps rearrangements by motion, compaction by strain, and agglomerate fractures by compression. This research project aims to explore the influence of the pressing step on the microstructure behavior during the sintering process. The study focuses on a powder composed of agglomerates with a microstructure based on a homogeneous mix of TiO2-Y2O3, TiO2 for surrogate UO2 and Y2O3 for surrogate PuO2. Each agglomerate consists of unbreakable elementary particles included in breakable aggregates, synthesized using the Cryogenic Granulation Synthesis Process (CGSP) [1].
Recent investigations at the Anatomix X-ray beam line in the synchrotron Soleil [2] have validated the results of tomographic micro-compressions, aligning with Kendall's theory, Fig 1. The experiments involved one-way cyclic micro-compression tests on agglomerates subjected to a simple load and unload cycle until breakage. Tomographic post-treatments provided insights into porosities, crack initiation, and propagation. Several DEM simulation studies have also been used to explore agglomerate behavior under dynamic or quasi-static loading with and without breakage, however without fully calibrating the breakage model [3], [4], [5].

Laboratory

Département de recherche sur les procédés pour la mine et le recyclage du combustible
Service d’études des Procédés de Traitement et de recyclage des combustibles
Laboratoire de chimie du Solide et d’Elaboration des Matériaux d’actinides
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down