About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Atomic-Scale Study of Dislocation-Point Defect Interaction in UO2 Fuel

Atomic-Scale Study of Dislocation-Point Defect Interaction in UO2 Fuel

Condensed matter physics, chemistry & nanosciences Solid state physics, surfaces and interfaces

Abstract

Uranium dioxide (UO2) is the primary fuel used in pressurized water reactors (PWRs). Under normal operating conditions and irradiation, the mechanical and microstructural behavior of UO2 evolves due to the accumulation of point defects (vacancies, interstitials, defect clusters) generated by nuclear fission events. These defects alter the thermo-mechanical behavior of the material, particularly through their interaction with dislocations, thereby influencing plasticity, stress relaxation, and ultimately, fuel integrity.
A detailed understanding of the elementary mechanisms governing these interactions is essential for improving the modeling of irradiated fuel mechanical behavior. In particular, the impact of point defects on dislocation mobility remains a key challenge in refining the constitutive laws used in the multi-scale simulation tools of the PLEIADES platform, which is dedicated to predicting fuel behavior under various operating conditions (nominal, transient, and accidental scenarios).
The objective of this study is therefore to analyze, at the atomic scale, the interactions between dislocations and point defects in UO2 in order to quantify their influence on the fundamental plasticity mechanisms. To this end, molecular dynamics calculations will be performed to investigate the effect of different types of point defects (e.g., Frenkel pairs) on dislocation mobility, considering key parameters such as temperature and applied stress. This work will enable the extraction of dislocation mobility laws in the presence of defects, which will serve as input data for micromechanical models used in larger-scale simulations, particularly those implemented in the PLEIADES platform.

Laboratory

Département d’Etudes des Combustibles
Service d’Etudes de Simulation du Comportement du combustibles
Laboratoire de Modélisation Multi-échelles des Combustibles
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down