The generalization of RF links operating at VUHFfrequencies to equip an increasing number of communicating electronic devices helps to intensify research on miniaturization and integration of antennas. As a result, significant progress are regularly carried out to reduce the size of antennas and it is not uncommon to find work describing antenna structures of 1/30 of the wavelength maximum dimension. Increased sensitivity to the operating environment is observable with electrically small antennas. This feature is reflected by problems of measurement of electrical and radiation properties that may be altered with the standard techniques of connecting a measuring cable to the antenna. Accordingly, the subject seeks to develop techniques for electrically small antennas charterization using non-invasive methods, that is to say does not interfere (or few) under test antenna. Two techniques will be investigated based on the work already done in the laboratory. The first technique is based on the far field electromagnetic reflectometry. The second technique involves the use of an RF-optical transducer in the vicinity of the antenna under test for a particular design of miniature optic RF conversion reflectometer for measuring antenna impedance.