About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Design and implementation of a bio-inspired sense, application to offshore teleoperation and to operator assistance

Design and implementation of a bio-inspired sense, application to offshore teleoperation and to operator assistance

Automatics, Remote handling Engineering sciences Metrology

Abstract

In recent years, the Bio-inspired Robotics Group of Robotics team IRCCyN has developed an artificial bio-inspired electric fish sense. To emulate the electrical sense, resistive probes were used for piloting the IRCCyN submarine autonomous robot.
For its part, within the Interactive Robotics Laboratory (LRI), the CEA LIST has been pursuing for several years a research activity in the field of force feedback telerobotics. The operator manipulates a slave robot located in hostile environments via a master arm located in a safe area and a computer system.
The candidate’s work will take place in a CEA- IRCCyN project running in parallel over a first project whose purpose is to demonstrate the concept of electro- haptic loop on a Cartesian arm carrying an electric probe with a fixed and known geometry. The postdoc will be in charge of implementing the loop on a "marinized" manipulator arm with a complex geometry. To do this, with the assistance of CEA and IRCCyN , he/she will support the preparation of this arm and adaptation of electrical sensor (emitter electrodes , receiver , electronic) architecture considered , as well as the adaptation of the monitoring / control of the haptic interface at the base of the electro-haptic loop. In addition to the technological challenges of this adaptation, the candidate must also consider different strategies to exploit the electric field on a multi-body system of variable geometry.
Experimental validation and proof of concept of this new offshore teleoperation system will be carried out on scenarios, to be defined, representative of the final application.

Laboratory

DPLOIRE (CTReg)
Autre
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down