As part of hydrodynamic experiments carried out at CEA-DAM, the laboratory is seeking, using pulsed X-ray imaging, to radiograph thick objects (several tens of mm), made of low-density materials (around 1 g/cm3), inside which shock waves propagate at very high speeds (several thousand m/s). For this type of application, it is necessary to use energetic X-ray sources (beyond 100 keV). Conventional X-ray imaging, which provides contrast due to variations in absorption cross sections, proves insufficient to capture the small density variations expected during the passage of the shock wave. A theoretical study recently carried out in the laboratory showed that the complementary exploitation of the information contained in the X-ray phase should enable better detectability. The aim of the post-doctorate is to provide experimental proof of concept for this theoretical study. For greater ease of implementation, the work will mainly focus on the dimensioning of a static X-ray chain, where the target is stationary and the source emits continuous X-ray radiation. Firstly, the candidate will have to characterize in detail the spectrum of the selected X-ray source as well as the response of the associated detector. In a second step, he (she) will design and have manufactured interference gratings adapted to high-energy phase measurements, as well as a representative model of the future moving objects to be characterized. Finally, the student will carry out radiographic measurements and compare them with predictive simulations. The student should have a good knowledge of radiation-matter interaction and/or physical and geometric optics. Proficiency in object-oriented programming and/or the Python and C++ languages would be a plus.