About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Post Doctorat   /   Development of artificial intelligence algorithms for narrow-band localization

Development of artificial intelligence algorithms for narrow-band localization

Artificial intelligence & Data intelligence Engineering sciences Mathematics - Numerical analysis - Simulation Technological challenges


Narrowband (NB) radio signals are widely used in the context of low power, wide area (LPWA) networks, which are one of the key components of the Internet-of-Things (NB-IoT). However, because of their limited bandwidth, such signals are not well suited for accurate localization, especially when used in a complex environment like high buildings areas or urban canyons, which create signals reflections and obstructions. One approach to overcome these difficulties is to use a 3D model of the city and its buildings in order to better predict the signal propagation. Because this modelling is very complex, state-of-the art localization algorithms cannot handle it efficiently and new techniques based on machine learning and artificial intelligence should be considered to solve this very hard problem. The LCOI laboratory has deployed a NB-IoT network in the city of Grenoble and is currently building a very large database to support these studies.
Based on an analysis of the existing literature and using the knowledge acquired in the LCOI laboratory, the researcher will
- Contribute and supervise the current data collection.
- Exploit existing database to perform statistical analysis and modelling of NB-IoT signal propagation in various environments.
- Develop a toolchain to simulate signal propagation using 3D topology.
- Refine existing performance bounds through a more accurate signal modelling.
- Develop and implement real-time as well as off line AI-based localization algorithms using 3D topology.
- Evaluate and compare developed algorithms with respect to SoTA algorithms.
- Contribute to collaborative or industrial projects through this research work.
- Publish research papers in high quality journals and conference proceedings.


Département Systèmes (LETI)
Service Technologies Sans Fils
Laboratoire Communication des Objets Intelligents
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down