About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Development of noise-based artifical intellgence approaches

Development of noise-based artifical intellgence approaches

Artificial intelligence & Data intelligence Computer science and software Engineering sciences Technological challenges

Abstract

Current approaches to AI are largely based on extensive vector-matrix multiplication. In this postdoctoral project we would like to pose the question, what comes next? Specifically we would like to study whether (stochastic) noise could be the computational primitive that the a new generation of AI is built upon. This question will be answered in two steps. First, we will explore theories regarding the computational role of microscopic and system-level noise in neuroscience as well as how noise is increasingly leveraged in machine leaning and artificial intelligence. We aim to establish concrete links between these two fields and, in particular, we will explore the relationship between noise and uncertainty quantification.
Building on this, the postdoctoral researcher will then develop new models that leverage noise to carry out cognitive tasks, of which uncertainty is an intrinsic component. This will not only serve as an AI approach, but should also serve as a computational tool to study cognition in humans and also as a model for specific brain areas known to participate in different aspects of cognition, from perception to learning to decision making and uncertainty quantification.
Perspectives of the postdoctoral project should inform how future fMRI imaging and invasive and non-invasive electrophysiological recordings may be used to test theories of this model. Additionally, the candidate will be expected to interact with other activates in the CEA related to the development of noise-based analogue AI accelerators.

Laboratory

Département Systèmes et Circuits Intégrés Numériques (LIST)
DSCIN
Laboratoire Intelligence Intégrée Multi-capteurs
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down