The Industrial Centre for Geological Disposal (Cigeo) is a project for a deep geological disposal facility for radioactive waste to be built in France. These wastes will be put in sealed packages in tunnels designed at 500 meters depth. The seals are made of a bentonite/sand mixture which has a high swelling capacity and a low water permeability. As a part of the long-term safety demonstration of the repository, it must be demonstrated that the sealing structures can fulfill their functions under seismic loads over their entire lifetime. In order to guarantee this future nuclear waste repository, CEA and Andra are collaborating to work on the potential scientific and engineering challenges involved.
The responses of underground repository to earthquake events are complex due to the spatially and temporally evolving hydro-mechanical properties of the surrounding media and the structure itself. Accurate modeling of the behavior, therefore, requires a coupled multiphysics numerical code to efficiently model the seismic responses for these underground repositories within their estimated lifespan of 100 thousand years.
The research will therefore, propose a performance assessment for sequential and parallel finite element numerical modeling for earthquake analysis of deep underground facilities. Then perform a synthetic data sampling to account for material uncertainties and based on the obtained results in the previous assessment, run a sensitivity analysis using a FEM or a metamodeling process. Finally, the results and knowledge gained within the span of this project will be processed and interpreted to provide responses for industrial needs.