CBRAM memories are among the most promising technologies as alternative to Flash technologies which face strong problems of scaling. CBRAM have a capacitor-like stack, where a chalcogenide material is sandwiched between a silver anode and an inert cathode. Biasing the cell, silver ions diffuse in the chalcogenide matrix and reach the cathode where they reduce. A conductive bridge is formed between the electrodes causing a drop of resistance. Reversing the bias yields to a back-migration of silver, interrupting the conductive bridge. This kind of device can be operated at very low voltage (below 1 V) and can lead to extremely low power consumption.
The main objective of this postdoc position will be the electrical characterization aiming to a better comprehension of the physics involved in the device, with the final goal of a strong improvement in device characteristics, in particular concerning data retention. For this aim, in-depth characterization on particular features (i.e. conduction mode, failure mechanisms) will be performed, as much as possible linked to a first level of physical modelling linking current conduction and diffused ions in the matrix. The candidate will address both hardware & methodology issues, and particular attention will be devoted to pulsed measurements. Various process, geometries and architectures will be studied. A strong interaction with the specialists of materials characterizations (nano-characterization platform) will be promoted for a better physical knowledge of the structures.