Advances in materials, transistor architectures, and lithography technologies have enabled exponential growth in the performance and energy efficiency of integrated circuits. New research directions, including operation at cryogenic temperatures, could lead to further progress. Cryogenic electronics, essential for manipulating qubits at very low temperatures, is rapidly developing. Processors operating at 4.2 K using 1.4 zJ per operation have been proposed, based on superconducting electronics. Another approach involves creating very fast sequential processors using specific technologies and low temperatures, reducing energy dissipation but requiring cooling. At low temperatures, the performance of advanced CMOS transistors increases, allowing operation at lower voltages and higher operating frequencies. This could improve the sequential efficiency of computers and simplify the parallelization of software code. However, materials and component architectures need to be rethought to maximize the benefits of low temperatures. The post-doctoral project aims to determine whether cryogenic temperatures offer sufficient performance gains for CMOS or should be viewed as a catalyst for new high-performance computing technologies. The goal is particularly to assess the increase in processing speed with conventional silicon components at low temperatures, integrating measurements and simulations.