Gasification, a thermochemical transformation generally performed at about 850°C, produces a gas that can be valorised in cogeneration, or for the synthesis of chemical products or fuels. Some bottlenecks are still present mainly for the gasification of biogenic or fossil origin wastes: irregular feeding in the reactor due to the heterogeneity in form and composition; formation of inorganic gaseous pollutants (HCl, KCl, NaCl, H2S) or organic ones (tars), which are harmful for the process and/or decrease its efficiency, and must be removed before the final application.
The objective of the post-doctoral work will be to test and optimize a pre-treatment step of the resource based on hydrothermal carbonisation (HTC). This transformation is performed at 180-250°C, in a wet and pressurised environment (2-10 MPa). The principal product is a carbonaceous solid residue (hydrochar), that can be valorised by gasification. HTC aims to limit the release of inorganic and organic pollutants in gasification, and to homogenise and improve the physical properties of the resource.
The proposed approach will consist in: experimentations in batch reactors on pre-selected resources and model materials, together with quantification and analyses of products; analysis of results aiming at elucidating the links between the resource and the properties of the hydrochar, as a function of operating conditions; an evaluation of mass and energy balances for the HTC-gasification process.