The development and modeling chemical processes require the acquisition of many thermodynamic and kinetic data . Conventional methods for measuring these data generally involve significant amounts of reagents. In particular for the reactive crystallisation, where the stochastic nature of nucleation requires the realization of a large number of experiments . The subject is to continue the work already done on the development of a dedicated chip to measure rapid nucleation kinetics . Firstly , the validity of kinetic measurements obtained by microfluidics technique will be evaluated and optimized based on well known and non- radioactive chemical systems . The microfluidic tool will then be used to study the sensitivity of these reactions to various operating parameters ( supersaturation , impurities , additives, etc. . ), before considering its transposition to nuclear processes such as decontamination of radioactive effluents. Finally, a new chip design could be proposed for the measurement of kinetics of liquid-liquid extraction , in connection with the development of new hydrometallurgical processes.