About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Integration of a first principles electronic stopping power in molecular dynamics simulations of collision cascades in semiconductors

Integration of a first principles electronic stopping power in molecular dynamics simulations of collision cascades in semiconductors

Condensed matter physics, chemistry & nanosciences Radiation-matter interactions Solid state physics, surfaces and interfaces

Abstract

In a radiative environment, the effects of atomic displacements can lead to the degradation of the performance of electronic and optoelectronic components. In the semiconductors constituting these components, they create defects at the atomic scale, which modify the number of free carriers and therefore alter the performance of the component.
In order to better understand the physical phenomena at the origin of these degradations, the displacement damage are well reproduced by simulation using classical molecular dynamics method. Nevertheless, a finer understanding of the influence of the electronic structure of the material on the number of defects created during the displacement cascade is necessary to have accurate simulations. For this, a model called electron-phonon EPH has been developed. The objective of this post-doctorate will be to feed this model with ab initio calculations and then to configure it in order to perform molecular dynamics simulations for several semiconductors used in current microelectronic technologies. The results obtained will be allow to better understand and improve the EPH model if necessary.

Laboratory

DCRE
DCRE
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down