The new lensfree imaging is against the foot of the recent developments in microscopy that focuses today on super-resolution achievements. Instead lensfree imaging offers several advantages: field of view (FOV) can cover several cm2, resolution in the range of 0.5µm to 3µm, mostly compact sizes and ease of use. The technique is based on holography online as invented by Gabor [1]. A biological object is illuminated by a coherent light, micrometric structures of the object diffract and the light interferes with the incident wave. The amplitude of the interference is recorded by a CMOS sensor and the image is reconstructed thanks to inverse-problem approaches. Albeit the method exists since 1970, the recent development of large field, small pixel size digital sensors helped realize the full potential of this method only since 2010.
At CEA-LETI Health Division, a new microscopic platform based on this principle has been developed. Its applicability for performing high-throughput monitoring of major cell functions such as cell-substrate adhesion, cell spreading, cell division, cell division orientation, cell migration, cell differentiation, and cell death have been demonstrated [2,3]. The new project proposed in this PostDoc is dealing with the development of an innovative lensfree cytometry setup aiming at high-throughput analysis of biological samples, e.g. cell counting, cell sorting, etc. The post-doctoral fellow will develop the instrumentation and methods and will conduct the experimentation and analysis of true biological samples.