



The main objective of this post-doctoral position is to develop a method for separating the fission products, plutonium and uranium in nuclear samples by chromatography with a resin volume of 200 µL or less. This project is structured around three research axes.
The first one consists in optimising the miniaturised separation method. The resin packing protocol, the pressure applied during the separation and the eluant compositions will be studied by comparing the chromatograms and by calculating the associated decontamination factors. These developments will be carried out using simulated samples first, and then with plutonium-containing samples. Control over the redox adjustment step will be necessary to maximize the decontamination factors. A second development axis will focus on the conception of a user-friendly system, minimizing interventions in the glovebox in order to reduce the user's exposition to ionizing radiation. The experience of the laboratory in terms of experimental setup miniaturisation and micro-fabrication will be useful for this post-doctoral position. The third research axis consists in applying the developments of the first two axes to the determination of isotopic composition of nuclear samples by TIMS or MC-ICP-MS with a per-mil level of uncertainty in a radiation-controlled laboratory.

