About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Post Doctorat   /   Modeling of charge noise in spin qubits

Modeling of charge noise in spin qubits

Engineering sciences Mathematics - Numerical analysis - Simulation New computing paradigms, circuits and technologies, incl. quantum Technological challenges


Thanks to strong partnerships between several research institutes, Grenoble is a pioneer in the development of future technologies based on spin qubits using manufacturing processes identical to those used in the silicon microelectronics industry. The spin of a qubit is often manipulated with alternating electrical (AC) signals through various spin-orbit coupling (SOC) mechanisms that couple it to electric fields. This also makes it sensitive to fluctuations in the qubit's electrical environment, which can lead to large qubit-to-qubit variability and charge noise. The charge noise in the spin qubit devices potentially comes from charging/discharging events within amorphous and defective materials (SiO2, Si3N4, etc.) and device interfaces. The objective of this postdoc is to improve the understanding of charge noise in spin qubit devices through simulations at different scales. This research work will be carried out using an ab initio type method and also through the use of the TB_Sim code, developed within the CEA-IRIG institute. This last one is able of describing very realistic qubit structures using strong atomic and multi-band k.p binding models.


Département Composants Silicium (LETI)
Service Caractérisation, Conception et Simulation
Laboratoire de Simulation et Modélisation
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down