About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Nano-silicon based negative composite electrode for lithium-ion batteries

Nano-silicon based negative composite electrode for lithium-ion batteries

Condensed matter physics, chemistry & nanosciences Physical chemistry and electrochemistry Ultra-divided matter, Physical sciences for materials

Abstract

With the aim of improving the battery type lithium-ion batteries, many works are devoted to research of new materials for the manufacturing of high-capacity electrodes. Silicon is an attractive material as an element of negative electrode instead of graphitic carbon with its high capacity that can theoretically reach almost 3579 mAh/g (Li15Si4, ten times more than the graphite (372 mAh / g, LiC6) . However, one major problem that has prevented the development of such electrodes is the high coefficient of volumetric expansion of silicon which leads to rapid degradation of the material (cracked, spraying the electrode ,....) and its performance. In this context, the work of post-doc will be to explore the electrochemical performance of negative electrodes prepared from silicon nanoparticles synthesized by laser pyrolysis CEA. The work will be to incorporate nanoparticles in a negative composite electrode and test its performance. The understanding work will be focused on the dual influence of nanostructuration of silicon particles and of the composition / implementation of the composite electrode on the performance. Thus, this work will be located at the junction of two CEA laboratory specialists from both key points of the study (Synthesis in Saclay, development and characterization of batteries in Grenoble).

Laboratory

Archive des laboratoires DRT (ne pas utiliser)
Laboratoire Batteries Avancées
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down