About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   New nanostructurated fluorescent materials for the detection of volatile organic compounds.

New nanostructurated fluorescent materials for the detection of volatile organic compounds.

Condensed matter physics, chemistry & nanosciences Soft matter and complex fluids

Abstract

The presence in indoor environments of many substances and (geno-)toxic, allergenic and infectious agents with pathogenic effects is well known. The on-site detection of these
substances has become a strong need, related to public health concerns. To respond to this need and enable the development of sensitive and selective ’field-deployable chemical sensors’, different technological solutions are being considered (conductimetric, electrochemical, piezoelectric, electro-mechanical, optical based systems…). Among all these methods, those based on the use of fluorescence phenomena are particularly interesting because of the inherently high sensitivity (lower limit of detection) of the technique and the possibility it offers to develop low cost, small size and low
energy consuming devices.
The proposal falls into this context and aims at evaluating the potentialities of new nanostructurated organic materials for the detection of indoor air trace pollutants by fluorescence change monitoring. This work will be done in straight collaboration with the Laboratoire Chimie des Polymères (UMR7610-CNRS/UPMC Paris VI) specialized in the synthesis
of functionalized organogels. More precisely, we propose to develop new highly porous supramolecular materials serving either as substrate for the sensitive fluorescent polymer or functionalised so as to directly detect and recognize the vapor pollutant.
The physico-chemical properties of these new materials will be examined by different techniques. Their performances in the presence of target pollutants (formaldehyde, acetaldehyde) and potentially interferants will be evaluated. Finally, the most interesting materials will be integrated into a functional prototype.

Laboratory

Département Métrologie Instrumentation et Information (LIST)
Service Capteurs et Instrumentation
Laboratoire Capteurs et Architectures Electroniques
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down