About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Quantum dot auto-tuning assisted by physics-informed neural networks

Quantum dot auto-tuning assisted by physics-informed neural networks

Artificial intelligence & Data intelligence New computing paradigms, circuits and technologies, incl. quantum Technological challenges

Abstract

Quantum computers hold great promise for advancing science, technology, and society by solving problems beyond classical computers' capabilities. One of the most promising quantum bit (qubit) technologies are spin qubits, based on quantum dots (QDs) that leverage the great maturity and scalability of semiconductor technologies. However, scaling up the number of spin qubits requires overcoming significant engineering challenges, such as the charge tuning of a very large number of QDs. The QD tuning process implies multiple complex steps that are currently performed manually by experimentalists, which is cumbersome and time consuming. It is now crucial to address this problem in order to both accelerate R&D and enable truly scalable quantum computers.
The main goal of the postdoctoral project is to develop a QD automatic tuning software combining Bayesian neural networks and a QD physical model fitted on CEA-Leti’s device behavior. This innovative approach leveraging the BayNN uncertainty estimations and the predictive aspect of QD models will enable to achieve fast and non-ideality-resilient automatic QD tuning solutions.

Laboratory

Département Composants Silicium (LETI)
Service des Composants pour le Calcul et la Connectivité
Laboratoire de Composants Mémoires
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down