About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Robust path-following solvers for the finite element simulation of cracking in complex heterogeneous media: application to reinforced concrete structures

Robust path-following solvers for the finite element simulation of cracking in complex heterogeneous media: application to reinforced concrete structures

Engineering sciences Mathematics - Numerical analysis - Simulation Mechanics, energetics, process engineering

Abstract

Path-following (or continuation) procedures are used to describe the unstable responses of structures exhibiting snap-back or snap-through phenomena. These methods consist in adapting the external load during the deformation process in order to satisfy a control constraint, by introducing an additional unknown, the load multiplier. Several variants exist depending on the controlled quantity: degrees of freedom, strain measures, or variables related to energy dissipation.
In addition to enabling the tracing of unstable responses, a major advantage of these approaches lies in improving the convergence of incremental Newton-type solvers by reducing the number of iterations required. This gain often compensates for the additional computational cost associated with the continuation algorithm. Some formulations have proven both efficient and simple to implement.
However, no objective criterion yet allows one to determine which formulation is best suited for the simulation of reinforced concrete structures, where multiple dissipation mechanisms coexist along with a strong spatial variability of the material properties.
The proposed postdoctoral work aims to develop robust path-following algorithms for such structures, building upon previous research carried out at CEA. It will include a critical analysis of existing formulations, an evaluation of their performance (monolithic or partitioned solvers), followed by their implementation. Finally, representative test cases of industrial structures will be simulated to assess the gain in robustness and computational cost compared to standard solvers.

Laboratory

Département de Modélisation des Systèmes et Structures
Service d’Etudes Mécaniques et Thermiques
Laboratoire d’Etudes de Mécanique Sismique
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down