About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Simulation of thermal exchange between fluid and structure in turbulent channels

Simulation of thermal exchange between fluid and structure in turbulent channels

Condensed matter physics, chemistry & nanosciences Engineering sciences Soft matter and complex fluids Thermal energy, combustion, flows

Abstract

There is presently a huge effort in Europe for the Development of high power (PW range), high repetition rate (1-10 Hz) lasers: the ELI project in three countries of Eastern Europe , the Apollon program in France have the objective to install multipetawatt high repetition rate lasers for scientific research and applications in various fields of physics. These large projects result in – and demand – an increased mastering of most challenging issues in laser technology; at high repetition rate one of the greatest issues consists in the cooling of the laser amplifiers for the highest repetition rates. In order to master this technology, CEA (Grenoble and Saclay, with a collaboration with Grenoble/LEGI) has decided to start an R&D program, with the following tasks to perform: (i) simulation of the cooling of amplifiers; (ii) validation of the calculations; (iii) design of an appropriate cooling system dedicated to future high power high repetition rate lasers: for this, cryogenic helium gas is a very interesting fluid, as working at low temperature for laser amplification allows a better thermal conductivity of the amplifiers (consequently a better uniformity of their temperature), and an increased efficiency of the laser amplification.
This postdoc position is associated with the first (simulation) task.

Laboratory

Institut de Recherche Interdisciplinaire de Grenoble
DSBT
Laboratoire Réfrigération et Thermohydraulique Hélium
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down