In the field of the treatment of liquid radioactive wastes on solid supports, the development of new composite materials synthetized by 3D printing under filtre shape is of primary of importance to decontaminate some radioactive effluents.
In this phD proposal, we propose to develop a membrane allowing to produce, from effluent containing somes traces of micronic solids in suspension and ionic species, a clarified effluent compatible with a nuclear outlet pipe. The challenge is to study the shaping of a material in a form of a filtration membrane allowing to trap in a single step an effluent containing some solids in suspension and some ionic species. In order to develop both functionnalities, 3D printing will be used to synthetise multiscale porous ceramic composites such as some geopolymers functionnalized by a selective adsorbants. The candidate, mainly based at CEA/ISEC Marcoule, could first formulate a functionnalized geopolymer paste with suitable rheological properties compatible with the constraints of the 3D printing process. A cross-flow filtration membrane with a controled macroporous network will be then printed by optimizing the geometry of the mesh. Finally, some sorption and cross-flow filtration tests will be performed on some model effluents containing calibrated solid in suspension and ions of interest such as Cs and Sr. The relevance of the printed membrane architecture will be assessed in relation to the capture of the solids and radioelements.
The candidate must have skills in the field of rheology, process and modeling. From this research work, job opportunities either in the field og 3D printing of materials or in the field of liquid waste treatment and depolution are potential options.