About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Theoretical and experimental studies of the polarized light's propagation into OLED structure

Theoretical and experimental studies of the polarized light's propagation into OLED structure

Engineering sciences Optics - Laser optics - Applied optics Photonics, Imaging and displays Technological challenges

Abstract

In collaboration with chemists from CEA Saclay and the University of Rennes, Leti's LCEM laboratory is interested in new chiral molecules for OLED (Organic Light Emitting Device) sources able to emit circularly polarized light (CP). The interest of these CPOLED sources is multiple and encompasses both micro-screens and healthcare applications. While the state of the art is quite extensive on the chemical part, few studies have looked at the generation and transport of light in CPOLEDs components.Likewise, the conditions for measuring the polarity of the light emitted are not very detailed in the existing literature.
At the LCEM laboratory, where these chiral molecules are integrated into CPOLED devices, the goal is to design OLED architectures that can better preserve the polarization of light. To do this, it is essential to understand the propagation of light in OLED stacks from a theoretical and experimental point of view. This work is part of a larger collaboration set up in the ANR "i-chiralight" project.
In this context, we are proposing a study which will take place in two phases.
- Study of simple emitting materials: The materials to be studied will be thin layers deposited under vacuum using evaporation's system of thin layers available in the laboratory. The organic materials used will be supplied by our chemical partners in Saclay or Rennes. Optical characterizations such as ellipsometry,photoluminescence, etc. will be carried out in order to assess the performance of molecules in terms of emission efficiency but also in terms of the rotational power of light. For this last point, a model able to calculate all the terms of the Müller matrices is under development and the validation of this one will be a work to be carried out by the post-doctoral fellow.
- Study of complete OLED components: In the second phase of this work, we will focus on the complete OLED system by studying the propagation of optical modes in the stack of the different layers const

Laboratory

Département d’Optronique (LETI)
Service des Nouvelles Applications de la Photonique
Laboratoire des Composants Emissifs
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down