About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Thermodynamic study of photoactive materials for solar cells

Thermodynamic study of photoactive materials for solar cells

Condensed matter physics, chemistry & nanosciences Engineering sciences Materials and applications Solid state physics, surfaces and interfaces

Abstract

The development of solar photovoltaic electricity generation requires the development of new materials for converting solar radiation into electron-hole pairs. Organic-inorganic hybrid perovskites (HOIPs) of the CsPbI3 type, with substitutions of Cs by formamidinium (FA) and/or methylammonium (MA) ions, have emerged as very promising materials in terms of performance and manufacturing. Substitutions of Cs with elements such as Rb, Pb with Sn, and I with Br are also being considered to improve stability or performance. The synthesis and optimization of the composition of layers of such materials require a better understanding of their thermodynamic equilibrium properties and stability. The objective is to construct a thermodynamic model of the Cs-Rb-FA-Pb-Sn-I-Br system. The project began with the ternary Cs-Pb-I system, which resulted in a paper [1]. The next step will focus on the ternary Cs-Pb-Br system, followed by the quaternary Cs-Pb-I-Br system. The approach uses the CALPHAD method, which focuses on building a database and an analytical formulation of the phases Gibbs energy, capable of reproducing thermodynamic and phase diagram data. A critical review of the data in the literature will enable this database to be initialized and the missing data will be evaluated by experiments and/or DFT calculations.

Laboratory

Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service de recherche en Corrosion et Comportement des Matériaux
Laboratoire de Modélisation, Thermodynamique et Thermochimie
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down