Safety is a key point of the IVth generation nuclear reactors. Therefore new analytical methods are investigated for reliably detecting tracers of a nuclear reactor malfunction. This postdoctoral work aims at studying an innovative laser absorption method, Cavity RingDown Spectroscopy CDRS, to measure gaseous tracers indicating a reactor malfunction. This study is part of the research and development activity of the Physical Chemistry Department (DPC), which is partly involved in improving and developing tools and analytical methods. The optical system studies are a collaboration work with the "Laboratoire Interdisciplinaire de Physique" of the Grenoble University (France), which is a leader research laboratory in trace gas detection by laser absorption methods CRDS (Cavity RingDown Spectroscopy) and OF-CEAS (Optical Feedback Cavity Enhanced Absorption Spectroscopy).
A glow discharge was coupled to a Cavity RingDown measurement. After plasma conditions optimization, the optical set-up is able to measure below 1 part per billion Xe/Ar mixing ratios. The optical saturation of the xenon electronic transition should be considered to quantify each isotope. The optimized CRDS measurement will be characterized. The set-up could further measure krypton isotopes.
A. Pailloux & al., depot de brevet 11 62436 (2011)
P. Jacquet, A. Pailloux, submitted to J. Anal. Atom. Spectrom. (2013)
N. Sadeghi, J. Plasma Fusion Research 80 (9), pp 767-776 (2005)