About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Adaptive and explainable Video Anomaly Detection

Adaptive and explainable Video Anomaly Detection

Artificial intelligence & Data intelligence Computer science and software Engineering sciences Technological challenges

Abstract

Video Anomaly Detection (VAD) aims to automatically identify unusual events in video that deviate from normal patterns. Existing methods often rely on One-Class or Weakly Supervised learning: the former uses only normal data for training, while the latter leverages video-level labels. Recent advances in Vision-Language Models (VLMs) and Large Language Models (LLMs) have improved both the performance and explainability of VAD systems. Despite progress on public benchmarks, challenges remain. Most methods are limited to a single domain, leading to performance drops when applied to new datasets with different anomaly definitions. Additionally, they assume all training data is available upfront, which is unrealistic for real-world deployment where models must adapt to new data over time. Few approaches explore multimodal adaptation using natural language rules to define normal and abnormal events, offering a more intuitive and flexible way to update VAD systems without needing new video samples.

This PhD research aims to develop adaptable Video Anomaly Detection methods capable of handling new domains or anomaly types using few video examples and/or textual rules.

The main lines of research will be the following:
• Cross-Domain Adaptation in VAD: improving robustness against domain gaps through Few-Shot adaptation;
• Continual Learning in VAD: continually enriching the model to deal with new types of anomalies;
• Multimodal Few-Shot Learning: facilitating the model adaptation process through rules in natural language.

Laboratory

Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service Intelligence Artificielle pour le Langage et la Vision
Laboratoire Vision et Apprentissage pour l’analyse de scènes
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down