The project concerns the design, development and study of spin dynamics in binuclear transition metal complexes
as models for quantum logic gates. The first part focuses on Cu(II) complexes. The second part explores Fe(II)-
based complexes that can be optically addressed in the visible range. The complexes will first be characterized by
continuous-mode electron paramagnetic resonance (EPR) spectroscopy to highlight the quantum bit behavior of
the mononuclear complexes used to form the binuclear species. Detailed studies of spin-lattice relaxation time (T1)
and spin-spin relaxation time (coherence time, T2) will then be carried out using pulsed EPR. Studies on
addressable complexes (mononuclear and possibly binuclear) will determine the impact of the presence of one
paramagnetic center on the coherence time of another within the binuclear entity, enabling the robustness of
quantum logic gates manipulatable by visible light to be assessed.