About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Advanced Surface Analysis of Ferroelectrics for memory applications

Advanced Surface Analysis of Ferroelectrics for memory applications

Advanced nano characterization Emerging materials and processes for nanotechnologies and microelectronics Technological challenges

Abstract

CEA-Leti has a robust track record in memory technology. This PhD project aims to contribute to the development of HfO2-based ferroelectric devices. One of the major challenges in this field is to stabilize the orthorhombic phase while reducing film thickness and thermal budget. To gain a deeper understanding of the underlying mechanisms, a novel sample preparation method will be adapted from a previous PhD project and further developed for application to ferroelectric memories. This method involves creating a beveled crater that exposes the entire thickness of the film, allowing for access by multiple characterization techniques (XPS, TOF-SIMS, SPM) on the same area. This approach will enable the correlation of compositional and chemical measurements with electrical properties. Furthermore, heating and biasing within advanced surface characterization instruments (TOF-SIMS, XPS) will provide insights into how device performance is influenced by compositional and chemical changes.

You possess strong experimental skills and a keen interest in state-of-the-art surface analysis instruments. You excel in team environments and will have the opportunity to collaborate with experts across a wide range of techniques on the nanocharacterization platform, including advanced numerical data treatment. Proficiency in Python or similar programming languages is highly desirable.

Laboratory

Département des Plateformes Technologiques (LETI)
Service de Métrologie et de Caractérisation Physique
Laboratoire Analyses de Surfaces et Interfaces
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down