Due to the increasing energy demand, developing efficient storage systems, both stationary and portable, is crucial. Among these, lithium-ion batteries stand out as the most advanced, capable of being manufactured using liquid or solid electrolytes. All-solid-state batteries have a bright future thanks to their non-flammable electrolytes and their ability to use metallic lithium to increase energy density. Although research on these batteries is dynamic, their commercialization is not yet a reality. Indeed, two significant obstacles to their development remain: the low intrinsic ionic conductivity of solids and the difficulty of obtaining good solid/solid interfaces within the composite electrodes and the complete system.
This thesis explores the potential of pyrochlore oxyfluoride as a new class of superionic material for all-solid-state batteries, which are more stable in air and have higher ionic conductivity than current solid oxide electrolytes. The electrochemical properties of all-solid-state batteries will be carefully examined using a combination of in situ and operando techniques, such as XRD, Raman, ion beam/synchrotron analysis, solid-state NMR, X-ray tomography, etc.
Keywords :
Solid electrolyte, All-solid battery, Nuclear magnetic resonance, Electrochemistry, Pyrochlore Oxyfluoride, in situ/operando, Spectroscopy, Synchrotron