Nowadays, high-temperature electrolysis is considered as one of the most promising technology for producing green hydrogen. The electrolysis reaction takes place in a Solid Oxide Cell (SOC) composed of an oxygen electrode (made of LSCF or PrOx) and a hydrogen electrode (made of Ni-YSZ) separated by an electrolyte (made of YSZ). To accompany industrialization f SOCs, the durability still needs to be improved. The main performance losses are due to the degradation of the two electrodes. In order to propose an improvement, it is essential to gain a precise understanding of electrode degradation mechanisms. In this thesis, we thus propose to apply high-resolution transmission electron microscopy and atom probe tomography (SAT) to study electrode degradation after aging under current. On the one hand, advanced electron microscopy techniques coupled with energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS) will be applied. In addition, analyses carried out on a SAT will provide three-dimensional information particularly suited to the complex structure of the electrodes.
This work should provide a better understanding of the degradation mechanisms of high-temperature electrolysis cells. Recommendations for their manufacture can then be made to improve their lifespan.