About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Assimilation of heterogeneous data in simulations of atmospheric dispersion of radionuclides at regional scale

Assimilation of heterogeneous data in simulations of atmospheric dispersion of radionuclides at regional scale

Earth and environmental sciences Environment and pollution

Abstract

Modeling and simulation provide essential knowledge on the aerial dispersion of gases and particles and the resulting environmental marking. This applies in particular to the releases that were generated by atmospheric nuclear tests carried out in the past by France in Polynesia. While regional-scale meteorological and dispersion calculations are reasonably reliable, their results have a degree of uncertainty and present discrepancies with heterogeneous measurements of activities or dose rates in the air, on the ground and in biological compartments. The thesis will aim to develop inversion methods, based on data assimilation, in order to reduce errors and uncertainties in simulations of regional dispersion of radionuclides. The application will concern certain nuclear tests in the atmosphere. However, the methods developed during the thesis, such as Monte Carlo sampling by Markov chains, will have a more general field of implementation. After a literature review on nuclear testing and data assimilation methods, original inverse modeling algorithms will be programmed, tested, and applied to the simulation of the dispersion of aerial releases from tests. This will allow us to estimate the anticipated important role of measurement assimilation in improving simulations.

Laboratory

DASE
DASE
Sorbonne Université
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down